Our focus and approach

Machine reading comprehension aims at teaching artificial agents to read and understand natural language.

Almost all human knowledge can be distilled from stored text. From stone tablets to printed books to the internet, we write our ideas down. A machine capable of assimilating this information would be incredibly useful. A truly literate machine could answer users' questions about arbitrary subjects in open domains like an oracle -- and wouldn't need an engineer to feed it all useful information in advance (an impossible task, anyhow). A machine that reads on its own could incorporate dynamic information in real time from the world around it.

Advanced Conversational Systems

Without effective natural-language interaction, the benefits of literate machines will be largely inaccessible to most users. Building a conversational agent involves solving many problems, from understanding natural language and decision making to generating natural language. Our goal is to build systems which are knowledgeable and that can exchange information with users to help users accomplish tasks or gain knowledge.

Reinforcement Learning

An intelligent machine should be able to make decisions and learn from environmental feedback similar to humans. In contrast to supervised learning the agent does not require examples of correct or incorrect behaviour in reinforcement learning. Instead, it can improve its behaviour by itself by interacting with the environment and observing the rewards it gets for its actions. At Maluuba, we do fundamental research in scalability of Reinforcement Learning to allow machines to perform complex tasks in the real world.